A Nonaveraging Set of Integers With a Large Sum of Reciprocals

By J. Wróblewski

Abstract. A set of integers is constructed with no three elements in arithmetic progression and with a rather large sum of reciprocals.

It is a famous open question due to Erdös [2] whether every infinite sequence of positive integers a_i (i = 1, 2, ...) such that

$$\sum_{i=1}^{\infty} \frac{1}{a_i} = \infty$$

contains arbitrarily long arithmetic progessions. It is not even known whether there exist sequences a_i containing no three terms in arithmetic progression (called for the sake of brevity nonaveraging sets) such that the sum $\sum_{i=1}^{\infty} 1/a_i$ is arbitrarily large.

Gerver (see [4]) constructed sequences containing no k-term arithmetic progression with the sum of reciprocals greater than $(1 - \epsilon)k \cdot \log k$, where any $\epsilon > 0$ is appropriate for all but a finite number of integers $k \ge 3$.

A well known nonaveraging set apparently first studied by G. Szekeres (see [3]), consists of the numbers $1 + 3^{\alpha_1} + 3^{\alpha_2} + \cdots + 3^{\alpha_k}$, where $k \ge 0$ and $0 \le \alpha_1 < \alpha_2 < \cdots < \alpha_k$. Denoting it by S we have

$$3.00793 < \sum_{a \in S} \frac{1}{a} < 3.00794$$

(cf. [5] where the value of the sum is given as 3.007).

The aim of this note is to construct a nonaveraging set of integers with the sum of reciprocals appreciably greater than $\sum_{a \in S} 1/a$. The construction uses the idea of Behrend [1]. Let, for $p, q > 0, r \ge 0, B(p, q, r)$ be the set of all integers of the form

$$\sum_{i=1}^{q} k_i (2p-1)^{i-1},$$

where $0 \leq k_i < p$ for i = 1, 2, ..., q and $\sum_{i=1}^{q} T_p(k_i) = r$ with

$$T_p(k) = \frac{(k - [(p+1)/2]) \cdot (k - [(p-1)/2])}{2}.$$

LEMMA 1. The set B(p, q, r) is nonaveraging. Moreover, for $s \in B(p, q, r)$ we have $0 \le s < \frac{1}{2}(2p-1)^q$.

©1984 American Mathematical Society 0025-5718/84 \$1.00 + \$.25 per page

Received February 23, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 10L20.

The proof is similar to that of Behrend [1] whose k_i^2 has been replaced here by $T_p(k_i)$.

Let Z, T be two finite sets of nonnegative integers, and let z, t be the greatest elements of Z, T respectively. Define (Z, T) by the formula

 $(Z, T) = Z \cup T + m + z + 1 \cup T + 3m + 2t + z + 3 \cup T + 3m + 4t + z + 4,$ where $m = \max(z, t)$ and $T + x = \{a + x : a \in T\}.$

LEMMA 2. If Z, T are nonaveraging, so is (Z, T).

The proof is by straightforward verification. Now we give the construction of our set. Put

$$Z_0 = \{ n \in S : n \leq 21523361 \},$$

$$Z_1 = (Z_0, B(4, 9, 5)), \qquad Z_2 = (Z_1, B(4, 10, 5))$$

and let for $n \ge 3$

$$Z_n = (Z_{n-1}, B(6, n+6, r_n)), \text{ where } r_n = \begin{cases} \left[\frac{4(n+6)}{3}\right] & \text{for } n \neq 5\\ 15 & \text{for } n = 5. \end{cases}$$

By definition $Z_0 \subset Z_1 \subset Z_2 \subset \cdots$ and Lemmas 1 and 2 imply that the set $Z = \bigcup_{n=0}^{\infty} Z_n$ is nonaveraging.

Computation performed on the computer ODRA 1305 of the Wrocław University shows that $\sum_{a \in \mathbb{Z}} 1/a > 3.00849$. Thus we have established

THEOREM. There exists a nonaveraging set of integers with the sum of reciprocals greater than 3.00849.

ul. Leczycka 11/3

53-632 Wrocław, Poland

1. F. BEHREND, "On sets of integers which contain no three terms in an arithmetic progression," *Proc. Nat. Acad. Sci. U.S.A.*, v. 32, 1946, pp. 331–332.

2. P. ERDös, "Problems and results in combinatorial number theory," Astérisque, v. 24-25, 1975, pp. 295-310.

3. P. ERDÖS & P. TURÁN, "On some sequences of integers," J. London Math. Soc., v. 11, 1936, pp. 261-264.

4. J. GERVER, "The sum of the reciprocals of a set of integers with no arithmetic progression of k terms," *Proc. Amer. Math. Soc.*, v. 62, 1977, pp. 211–214.

5. J. GERVER & L. RAMSEY, "Sets of integers with no long arithmetic progressions generated by the greedy algorithm," *Math. Comp.*, v. 33, 1979, pp. 1353–1360.